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Small particle light scattering can produce light with polarization characteristics different from those of
the incident beam. An analytical solution to the scattering by a spheroid with inclusion for an on-axis
polarized Gaussian beam incidence is provided within the generalized Lorenz-Mie theory framework. The
shapes of the inclusion can be spherical, confocal spheroid, or non-confocal spheroid. The Muller scattering
matrix elements are computed for plane wave incidence or Gaussian light beam incidence. The effect of
the size and shape of the inclusion or the coating on the polarized Gaussian light scattering characteristics
by a spheroidal water coating aerosol particle are computed and analyzed.
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Natural particles often exhibit nonspherical and inhomo-
geneous overall shapes and complex morphologies. Some
of these particles can be modeled by core-shell particles,
such as the nucleated blood cells, cloud particles, and
hydrometeors with condensation nuclei. The spheroidal
particle model, one of the possible analytical models for
the scatterer, has also been applied in numerous cases,
e.g., spheroids describe well the shape of plant and ani-
mal cells, bacteria, spores, or microalgae, microcavities,
aerosols in the atmosphere, and so on.

To date, the light scattering method is effective in the
retrieval of the microphysics characteristics of small par-
ticles. The scattering characteristics of an inhomoge-
neous particle should be accurately simulated to apply
this light scattering technique in analyzing particles con-
taining inclusion. Light scattering produces light with
polarization characteristics different from those of the
incident beam. When the incident beam is unpolarized,
the scattered light has at least one nonzero Stokes param-
eter other than intensity, and this phenomenon is often
called “polarization”. Although light scattering intensity
is the most commonly measured quantity, polarization
can be measured with significantly higher accuracy than
light intensity.

An accurate theory method is required when laser is
used as light source to study the scattering properties
of the spheroidal particles. The generalized Lorenz-
Mie theory (GLMT) developed by Gouesbet et al. can
effectively describe the interaction of a shaped beam with
a spherical particle by relying on the separability of the
variables[1,2]. This theory has been expanded in numer-
ous studies to multilayered spheres[3], spheroids[4], and
infinite cylinders[5]. Han et al.

[6] studied in detail the
scattering of Gaussian beam by multi-layer spheroid, and
the equations for calculating the normalized differential
scattering cross sections are given. In this letter, we an-
alyze the polarization of Gaussian light scattered by a
single spheroidal particle with an inclusion.

In Fig. 1, a Gaussian beam propagates in free space
and from the negative z′ to the positive z′ axis of the
Cartesian coordinate system O′x′y′z′, with the middle of
its beam waist located at the origin O′, and the time-

dependent part of the electromagnetic fields is assumed
to be exp(−iωt). An accessory system Oxyz parallel to
O′x′y′z′ is introduced to define the location of a coated
spheroidal particle.The center of the coated spheroid is
located at origin O and has the Cartesian coordinates
(0, 0, z0) in O′x′y′z′. The major axis of the coated
spheroid is along the z axis. The semifocal distance and
the semimajor and semiminor axes are denoted by f1, a1,
and b1 for the inclusion spheroidal particle surface, and
by f2, a2, and b2 for the outer surface of the dielectric
coating.

Within the GLMT framework,we have obtained an ex-
pansion in Ref. [7] of the electromagnetic fields of an
incident Gaussian beam in terms of the spheroidal vec-

tor wave functions M
r(1)
eomn

(c, ζ, η, φ) and N
r(1)
eomn

(c, ζ, η, φ),
with respect to the system Oxyz as
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n=m

in[Gm
n,TEMr(1)
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+ iGm
n,TMNr(1)
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n,TMMr(1)

omn(c, ζ, η, φ)

− iGm
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where c = kf2 and Gm
n,TE and Gm

n,TM are the BSCs.
When the Gaussian beam expansion is obtained, the

 

Fig. 1. Relationship between the Cartesian coordinate system
Oxyz and the Gaussian beam coordinate system O′x′y′z′.
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scattered fields of the spheroidal particle can be ex-
panded in terms of the appropriate spheroidal vector
wave functions as[7]

Es =E0

∞∑

m=0

∞∑

n=m

in[βmnMr(3)
emn(c, ζ, η, φ)

+ iαmnN
r(3)
omn(c, ζ, η, φ)]. (3)

The electromagnetic fields within the spheroidal parti-
cle can be represented by

Ew(1) =E0
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m=0
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n=m

in[δ(1)
mnMr(1)

emn(c1, ζ, η, φ)

+ iγr(1)
mn Nr(1)

omn(c1, ζ, η, φ)], (4)

where amn, βmn, δmn, and γmn are the unknown expan-
sion coefficients to be determined using the boundary
conditions, c1 = f1k1, k1 = kñ1, and ñ1 is the refractive
index of the material of the spheroidal particle relative
to that of free space.

To overcome the difficulty of applying the boundary
conditions on the inclusion particle and coating surfaces
that are concentric and non-confocal, the electromagnetic
fields within the dielectric coating are expanded in terms
of the spheroidal vector wave functions attached to the
spheroid and coating surfaces, respectively, as[8]
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omn(c2, ζ, η, φ)], (5)

Ew =E0

∞∑

m=0

∞∑

n=m

in[δ′mnMr(1)
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+ χ′

mnMr(3)
emn(c′2, ζ, η, φ) + iγ′

mnN
r(1)
omn(c′2, ζ, η, φ)

+ iτ ′
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where c2 = k2f1, c′2 = k2f2, k2 = kñ2, and ñ2 is the
refractive index of the dielectric coating material relative
to that of free space.

With ζ1 and ζ2 as the radial coordinates of the bound-
ary surfaces of the spheroid and coating, respectively, the
boundary conditions on the surface ζ = ζ2 are described
by

Ei
η + Es

η = Ew
η , Ei

φ + Es
φ = Ew

φ

Hi
η + Hs

η = Hw
η , Hi

φ + Hs
φ = Hw

φ

}
at ζ = ζ2. (7)

And the surface ζ = ζ1 is described by

Ew(1)
η = Ew

η , E
w(1)
φ = Ew

φ

Hw(1)
η = Hw

η , H
w(1)
φ = Hw

φ



 at ζ = ζ1. (8)

The relation between the scattered fields and the incident

fields can be written as[9,10]

[
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ϕ

]
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exp(ikR)
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] [
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ϑ
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]
, (9)

where n̂inc denotes the incident direction, n̂sca denotes
the scattering direction, and SL is a 2×2 amplitude ma-
trix that transforms the electric field vector components
of the incident wave into the electric field vector compo-
nents of the scattered waves.

The polarization state of a light beam is traditionally
described by a vector I = (I, Q, U, V )T composed of four
Stokes parameters (T means transpose). The first Stokes
parameter, I, is the intensity, whereas the other three pa-
rameters describe the polarization state of the beam. The
Stokes parameters are always defined with respect to a
reference plane, e.g., the meridional plane of the beam in
a spherical coordinate system. The scattering of a light
beam by a single particle is fully characterized by a 4×4
Mueller matrix F that describes the transformation of
the Stokes vector of the incident beam into the Stokes
vector of the scattered beam.
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When a particle has a mirror symmetry relative to the
principal plane, the signs of amplitude matrix elements
S12 and S21 change for the mirror particle. The complete
particle can be considered to consist of two halves that
are touching. When the scattering amplitude matrix in
this case is summed up, only the S11 and S22 survive.
Consequently, the corresponding Muller matrix elements
F13, F14, F23, F24, F31, F32, F41, and F42 are zero,
and F22/F11 unites. Notably, the deviation of F22/F11

from unity has normally been regarded as an indication
of the nonsphericity of a scattering particle[11,12], and
F12 = F21, F33 = F44, and F43 = −F34 for the light
beam on-axis incidence on a mirror symmetry particle.
F11, F12/F11, F33/F11, and F34/F11 will be discussed as
follows.

The results of the GLMT computations for light scat-
tering by a spheroidal water coating aerosol particle is
presented in this section. The Muller matrix elements
F11, F12, F33, and F34 are computed for normal inci-
dence of an on-axis Gaussian beam with a wavelength
of λ=0.66328 µm, in which case the refractive index of
the water coating is ñ = 1.33 and that of the inclusion
particle is ñ1 = 1.5.

The Muller matrix elements for a two-layer spherical
particle illuminated by the on-axis Gaussian beam with
the waist radius of w0 = ∞ (plane wave), λ/2, λ, and
2λ are illustrated in Fig. 2. The size parameter of the
inclusion and the water coating are defined as ka1 = 4
and ka2 = 10, respectively.

The Muller matrix elements for a two-layer confocal
spheroidal particle illuminated by the on-axis Gaussian
beam with the waist radius w0 = ∞ (plane wave), λ/2,
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Fig. 2. Muller matrix elements for a single spherical particle
for the Gaussian light beam scattering with different beam
waist radii.

Fig. 3. Muller matrix elements for a single confocal spheroidal
particle for Gaussian light beam scattering with different
beam waist radii.

λ, and 2λ, respectively, are shown in Fig. 3. The semi-
major and semiminor axes are denoted by f1, a1, and b1.
The size parameter of the inclusion and the water coating
are defined as ka1 = 3 and ka2 = 4, respectively, and
the semifocal distanceis kf = 2. The scattering prop-
erties of a spheroid with plane wave incidence may be
significantly different from those of the Gaussian beam
(Fig. 3). The first element of the Muller matrix (which
is associated with the single scattering phase function)
for plane wave incidence are larger than the others. The
scattering characteristics of a confocal spheroid for Gaus-
sian beam incidence approaches the plane wave incidence
case with increasing beam waist radius.

Similar to Fig. 3, Fig. 4 also presents the elements
of the Muller matrix element of a water-coated non-
confocal spheroid aerosol, with aspect ratio values of
ε = 2.0 for both inclusion and coating. The incidence
wavelength, size parameter, and refractive index of the
spheroid are similar to those in Fig. 3. Remarkable
differences are found between the curves of the confocal
and non-confocal spheroidal water coating aerosol parti-
cle, although they have similar size parameters (Figs. 3
and 4).

The elements of the Muller matrix F11 and F12/F11

varying with the aspect ratio of the inclusion for a two-
layer spheroid are shown in Fig. 5. The size parameters
of the shell and the inclusion are ka2 = 10 and ka1 = 4,
respectively. The waist radius of the incidence Gaussian
beam is w0 = λ, and the aspect ratio of the shell is
a2/b2 = 1.5. The elements of the Muller matrix F11 and
F12/F11 varying with the aspect ratio of the inclusion
for a sphere with a spheroid inclusion are shown in Fig.
6. The waist radius of the incidence Gaussian beam is
w0 = λ. The size parameters of the shell and the inclu-
sion are similar to those in Fig. 5. The elements of the
Muller matrix F11 and F12/F11 varying with the aspect

Fig. 4. Muller matrix elements for a single non-confocal
spheroidal particle for the Gaussian light beam scattering
with different beam waist radii.

Fig. 5. Muller matrix elements (a) F11 and (b) F12/F11 for a
single non-confocal spheroidal particle for the Gaussian light
beam scattering with different aspect ratios of the inclusion.
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Fig. 6. Muller matrix elements (a) F11 and (b) F12/F11 vari-
ation with the aspect ratio of the inclusion for a sphere with
a spheroid inclusion.

Fig. 7. Muller matrix elements (a) F11 and (b) F12/F11 varia-
tion with the aspect ratio of the inclusion for a spheroid with
a sphere inclusion.

ratio of the shell for a spheroid with a sphere inclusion
are illustrated in Fig. 7. The waist radius of the inci-
dence Gaussian beam is w0 = λ. The size parameters of
the shell and the inclusion are similar to those in Fig. 5.

Both the shape of the shell and the inclusion sig-
nificantly affect the scattering characteristics of the par-
ticle, and the light scattering polarization degree is very
sensitive to the shape of the inclusion and shell (Figs. 5–
7). This sensitivity makes the accurate measurement of
the Muller matrix a valuable technique for particle char-
acterization.

In conclusion, we provide the general formulas that can
be used to compute the amplitude matrix for Gaussian
light scattering by a spheroidal particle with a sphere
or spheroid inclusion within the GLMT framework. The
numerical results for the Muller matrix are presented for

the polarized Gaussian light scattering using a spheroidal
water coating aerosol particle, and the results are com-
pared with the case of the plane wave at normal inci-
dence. Significant differences are found for the Gaussian
light scattering with different waist beam radii, and the
Muller scattering matrix are very sensitive to the shape
and size parameters of the shell and the inclusion for
Gaussian light beam scattering. The values of the scat-
tering matrix element F11 increase with increasing waist
beam radius, but the values of F11 slightly change with
varying aspect ratio of the shell and the inclusion. The
other three Muller scattering matrix elements, especially
F12/F11, are more sensitive to the inclusion than F11.
The formulas and the computed results are useful for the
determination of the characteristics of spheroidal parti-
cles.
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